

Validation of Soft Classifiers for Cells and Tissues

Claudia Beleites^{1,2}, Christoph Krafft², Jürgen Popp^{2,3}, and Valter Sergo¹

- 1 CENMAT and Dept. of Industrial and Information Engineering, University of Trieste/Italy
- 2 Institute of Photonic Technology, Jena/Germany
- 3 Institute of Physical Chemistry and Abbe Center of Photonics, University Jena/Germany

2900

Specificity

N A°IIA°III+

Soft Classifiers

with continuous class membership \in [0, 1] model

- uncertainty/probability
- (dis)agreement of panel of pathologists
- probability of sample belonging to class

mixtures

Example: Grading of Astrocytoma Tissues

- samples between classes
- e.g. currently undergoing de-differentiation
- mixtures of cells
- **Soft prediction:** common, e.g. posterior probabilities **Soft training:** available, e.g. Beleites *et. al.*, ABC, *400*, 2801ff. Soft validation: needed borderline cases *target* of new diagnostics.

total 37 015 19906 $\Delta \widetilde{v} / \text{cm}^{-1}$ **Aim:** grading of ambiguous tissue regions **Data set:** Raman maps of bulk samples in moist chamber **Classifier:** logistic regression

Validation: 125×8 -fold cross validation (patient-wise splitting)

Classifier Performance Measures

Validation Results

Soft Confusion Matrix \mathcal{Z}

• for hard $r_i, p_i \in \{0, 1\}$ use classical AND: $\mathcal{Z}_{i,j} = r_i \wedge p_i$ • generalizations for soft $r_i, p_i \in [0, 1]$

	strong AND	product AND	weak AND
$r_{i} = 0.5$ $p_{i} = 0.8$			
$\mathcal{Z}_{i,j} =$	$\max(\mathbf{r_i} + \mathbf{p_j} - 1, 0)$	r _i ⋅ p _j	$\min(\mathbf{r_i}, \mathbf{p_j})$
=	0.3	0.4	0.5
scenario	worst case	expected	best case

 calibration-like: weighted mean absolute error (wMAE) and weighted root mean square error (wRMSE) wmae < wrmse < \sqrt{wmae}

Classicial validation: "hardening" predictions of unambiguous samples

 Soft performance more sensitive for slight errors than classical measures Many samples partially A^oII ~> large difference between weak and strong AND • wRMSE close to wMAE: many samples with slight deviations

Implementation

- **Implementation:** © package **softclassval**
- **Homepage:** softclassval.r-forge.r-project.org

License: GPL 3

Contact: Claudia.Beleites@ipht-jena.de

Acknowledgements

Financial support by the Associazione per i Bambini Chirurgici del IRCCS Burlo Garofolo Trieste and of the European Union via the EFRE and TMBWK (Project: B714-07037) is highly acknowledged.

Conclusions

- Samples with partial class membership can be used for validation.
- For unambiguous samples, no hardening is required
- Soft performance more sensitive than classical hard performance
- Soft operators for worst case, best case, expected performance as well as calibration-type operators.

