Calculating Sensitivity and Specificity of Soft Classification Models

C. Beleites^{a,b}, K. Geiger^c, G. Schackert^c, R. Salzer^b, and V. Sergo^a

^aCENMAT & DMRN, Università degli Studi di Trieste/Italy ^bAnalytical Chemistry, Dresden University of Technology, Dresden/Germany ^c University Hospital, Dresden University of Technology, Dresden/Germany

> Afrodata 2010, Rabat September 24th, 2010

Outline

Introduction: Raman Spectroscopic Grading of Gliomas

- Gliomas
- Soft Classification
- The Data Set

2 Soft Classifier Validaton

- Classifier Performance Measures
- Confusion Matrix
- Performance Measures: Soft Sensitivity & Co.
- Results for the Gliomas

3 Summary

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation

Classifier Performance Confusion Matrix Soft Sensitivity Results

Gliomas

- Most common primary brain tumors
- Astrocytomas most frequent subgroup
- Astro. °II \rightarrow Astro. °III \rightarrow Glioblastoma (°IV)

Soft Sensitivity

C. Beleites

Introduction

Gliomas

Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity

Results

C. Beleites

Introduction

Gliomas

Soft Classification The Data Set

Soft Validation

Classifier Performance Confusion Matrix Soft Sensitivity Results

- De-differentiate
 - Mixture of tumour grades
 - 37 % of tumour sections mainly tissue between grades
- Polymorphous / Heterogeneous:
 - One tumour has different cell populations
 - Infiltrative growth
 - Areas with mixtures of cells

- class membership as fraction of 0 100%
- interpretation:
 - mixture
 - probability
- soft prediction: very common
- soft reference: less common, but available
- soft test: topic of this talk

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set Soft Validation

Classifier Performance Confusion Matrix Soft Sensitivity Results

	crisp reference		soft reference	
class	patients	spectra	patients	spectra
Normal	16	7456	35	15747
thereof controls	9	4902	9	4902
Astrocytoma °II	17	4171	47	19128
Astrocytoma °III+	27	8279	53	21617
total	53	19906	80	37015

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

Spectra

Soft Sensitivity

weighted median, $16^{\rm th}$ and $84^{\rm th}$ percentile spectra

LR Projection

Soft Sensitivity C. Beleites

Introduction

Contour contains 50 % of spectra, dot "2d median"

LR Projection

4 -

2

-2

-4 -

-6

LR 2 0-

C. Beleites Introduction Gliomas 140 -Soft Classification The Data Set 120 -Soft Validation Classifier Performance Confusion Matrix 100 -Soft Sensitivity Results 80 -Summary counts 60 40 -

6

Λ

20 -

0

class

A°III

Contour contains 50 % of spectra, dot "2d median"

0

LR 1

2

Soft Sensitivity

LR Projection

Soft Sensitivity

CHE

Contour contains 50 % of spectra, dot "2d median"

Not optimized, no data-driven optimization

- intensity calibration
- baseline correction (linear + quadratic)
- normalization: area 2900 3025 cm⁻¹
- "centering": substract mean spectrum of normal gray matter
- Classification: Logistic regression

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

- Comparison of models: statistical test
- Sensitivity & Co.: high variance $\sigma^2(p) = \frac{1}{n}p(1-p)$
- Observation: 18 correct predictions of 20 test samples 95 % confidence interval for true sensitivity: 0.72 – 0.98

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

- $125 \times$ 8-fold cross validation
- splitting patient-wise spectra of one patient are not statistically independent
- No outer loop
 - Characterization of these models possible
 - Decisions needed from surgeons

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation

Classifier Performance Confusion Matrix Soft Sensitivity Results

Validation

$+ \underbrace{ \overbrace{ } }_{A} \underbrace{ }_{Classifier} \underbrace{ }_{Classi$

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation

Classifier Performance Confusion Matrix Soft Sensitivity Results

Validation

Soft Sensitivity

Validation

Soft Sensitivity

ITAT

Classifier Performance Measures

Soft Sensitivity

C. Beleites

СНЕ

"Classical" Confusion Matrix

$$\mathcal{Z}_{i,j} = \begin{cases} 1 & \text{if } \mathbf{Y}_i = \widehat{\mathbf{Y}}_j = 1 \\ 0 & \text{else} \end{cases}$$

C. Beleites

Soft Classification Soft Validation Classifier Performance Confusion Matrix

Confusion Matrix: Multiplication

$$\mathcal{Z}_{i,j} = \mathbf{Y}_i \cdot \widehat{\mathbf{Y}}_j$$

Soft Sensitivity

C. Beleites

Soft Classification The Data Set Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results Summary

 \mathcal{Z}

 $\mathcal{Z}^{\mathsf{ideal}}$

Δ

C. Beleites

Introduction

Classifier Performance

Absolute vs. Squared Error

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix

Soft Sensitivity Results

Putting Things Together: Sensitivity

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity

Results

Putting Things Together: Specificity

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity

Results

"Classical" Confusion Matrix: hardening

Median, 16th and 84th percentile over 125 iterations.

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

Application: Sensitivity

C. Beleites

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

Summary

Observed sensitivities for all iterations and samples.

Application: Sensitivity MAE vs. RMSE

Summary

Observed sensitivities for all iterations and samples.

Application: Specificity

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

Summary

Observed specificities for all iterations and samples.

• Soft or partial class membership describes

- class mixture
- probability
- Sensitivity, specificity, predictive values for soft classication
- ✓ RMSE or MAE
- ✓ No hardening of soft classifier output needed
- ✓ More sensitive measures of model performance
- X Careful comparing classifier performance
- Borderline cases most important

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

Financial Support

- Deutsche Telekom Stiftung (scholarship)
- Associazione per i Bambini Chirurgici del Burlo
- Fondo Trieste

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

Software

- softclassval.r-forge.r-project.org The discussed classification performance measures
- hyperspec.r-forge.r-project.org: Handling of spectroscopic data sets
- Google Summer of Code 2011

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set

Soft Validation Classifier Performance Confusion Matrix Soft Sensitivity Results

Maximum Class Membership

Soft Sensitivity

C. Beleites

Introduction Gliomas Soft Classification The Data Set Soft Validation

Classifier Performance Confusion Matrix Soft Sensitivity Results

Soft Sensitivity C. Beleites

Maximum Class Membership

