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Abstract Gliomas are the most frequent primary brain tu-
mours. During neurosurgical treatment, locating the exact
tumour border is often difficult. This study assesses grading
of astrocytomas based on Raman spectroscopy for a future
application in intra-surgical guidance. Our predictive clas-
sification models distinguish the surgically relevant classes
“normal tissue”, and “low” and “high grade astrocytoma” in
Raman maps of moist bulk samples (80 patients) acquired
with a fibre-optic probe.

We introduce partial class memberships as a strategy to
utilize borderline cases for classification. Borderline cases
supply most valuable training and test data for our applica-
tion. They are (a) examples of the sought boundary and (b)
the cases for which new diagnostics are needed. Besides, the
number of suitable training samples increases considerably:
Soft logistic regression (LR) utilises 85 % more spectra and
50 % additional patients than LDA. The predictive soft LR
models achieve ca. 85, 67, and 84 % (normal, low, and high
grade) sensitivity and specificity. We discuss the different
heuristics of LR and LDA in the light of borderline samples.

While we focus on prediction, the spectroscopic inter-
pretation of the predictive models agrees with previous de-
scriptive studies. Unsaturated lipids are used to differenti-
ate between normal and tumour tissues, while the total lipid
content prominently contributes to the determination of the
tumour grade. The high wavenumber region above 2800 cm-1

alone did not allow successful grading.
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1 Introduction

1.1 Gliomas

Gliomas are the most frequent primary brain tumours. Among
them, astrocytomas are the largest subgroup. The world health
organisation distinguishes four grades of astrocytomas ac-
cording to their histology and behaviour [1–3]. In adults,
only ◦II to IV are found. Some astrocytomas ◦II (A ◦II)
do not appear to be malignant, but most de-differentiate in
time and gain in malignancy. Astrocytomas ◦III (A ◦III) are
malignant, and glioblastomas (◦IV; GBM) are the most un-
differentiated gliomas. While some A ◦III and GBM are
formed by de-differentiation of lower grade tumours, others
appear de novo [1, 4].

Glioma treatment comprises surgery if possible, and the
complete removal of the tumour is one of the most important
factors for the prediction of the recurrence-free survival time
of the patient [4, 5]. In tumour surgery outside the brain,
ample safety margins around the tumour are often applied.
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This is not possible in brain surgery as the normal brain tis-
sue must be preserved. An additional difficulty arises from
the infiltrative growth of the astrocytomas: the tumour bor-
der is hardly visible. Thus, although complete removal of
the tumour is asked for, the surgical decision is often to re-
move the malignant part of the tumour only. Neurosurgeons
work with a precision up to 1 mm but so far no diagnostic
technique delineating the proper excision border for the as-
trocytomas is available at this resolution.

The pre-operative diagnostic involves standard imaging
techniques such as magnet resonance tomography (MRT)
and computed tomography (CT) as well as less standard
methods like 18F or 11C positron emission tomography (PET),
or single photon emission computed tomography (SPECT).
During surgery, however, the opening of the skull, incision,
and dislocation by the surgical tools as well as swelling of
the cut tissue and the movement due to the heart beat lead
to substancial displacement of the tissues. This limits the
spatial resolution of stereo-navigation based on pre-surgery
images to several millimeters, in particular situations even
to 1 cm.

During surgery, imaging techniques such as angiogra-
phy, intra-operative MRT, or fluorescence guidance by 5-
aminolevulinic acid may be used. Intra-operative MRT re-
quires not only extremely costly instrumentation but also
considerable amounts of time (at least 1 h) and, while less
affected by brain shift than pre-surgery MRT, frequently the
image quality is considerably lower. Fluorescence guided
surgery is recommended for malignant tumours [6], but like
MRT and CT with contrast agents, the enhancement is re-
stricted to areas where the blood brain barrier is compro-
mised [6–8]. Angiography is also useful for the diagnosis of
malignant tumours, but not even all A ◦III show enhance-
ment [6]. The latter two techniques have thus inherent diffi-
culties delineating the border between low grade and normal
tissue. Histopathological diagnosis yields details about the
tumour biology and grade down to cell level. For the finding
of the tumour border, however, it is of limited aid as it is a
purely ex-vivo technique and even with rapid staining proto-
tocols at least 20 min are needed to arrive at a diagnosis.

In contrast to histopathologic (ex-vivo) questions, the to-
tal time of a the surgical procedure is critical, as longer nar-
cosis imposes considerable physical strain on the patient.
Therefore, not only the time to arrive at a diagnosis for a
piece of tissue but also the time to treat this tissue is criti-
cal, and surgical treatment of single cells is not feasible. The
surgeon should be presented with information at the desired
level of (spatial) detail which may even even be lower than
the maximal working precision.

In other words, tools to help surgeons finding the proper
excision border in-vivo with a spatial resolution adapted to
the surgeons’ working precision of up to 300 µm are badly
needed.

1.2 Raman Spectroscopy and Grading of Astrocytomas

Raman spectroscopy has shown its potential to identify tu-
mours (see e.g. the reviews [9–11]). It has been applied to
differentiate tissues in human GBM [12–14]. In animal mod-

els, GBM and C6 gliomas were studied ex-vivo using thin
sections [15] and moist bulk samples [16, 17], and recently
first in-vivo measurements were conducted [17, 18]. All these
studies, however, focus on descriptive models of particular
subsets of the tissues encountered in gliomas. In contrast,
we present here dedicated predictive models with larger pa-
tient numbers and including patients of all relevant tumour
grades: A ◦II, A ◦III, and GBM. Predictive as well as de-
scriptive grading of astrocytomas has been studied by mid-
infrared spectroscopy [8, 19, 20] including A ◦II, A ◦III,
and GBM. The first two [19, 20] model the patient’s tumour
grade (maximal de-differentiated morphology), the third [8]
models the predominant morphology, too.

For intra-operative in-vivo diagnostics, Raman spectroscopy
offers significant advantages over mid-infrared spectroscopy.
Water does not disturb the analysis of Raman spectra. Thus,
native tissue is easily analysed. Fibre optic probes give spa-
tial flexibility, and the spatial resolution can be chosen ac-
cording to the needs of the surgeon. In general, larger focus
diameters allow higher total excitation power without dam-
aging the tissue and thus shorter acquistion times per spec-
trum. Therefore, the spatial resolution of the probe should
match the surgeon’s needs also in order to allow speedy
collection of the spectra. Raman probes may be configured
to measure deeper into the tissue than mid-infrared tech-
niques which can access the first few µm only. Last but not
least, fibre optic Raman probes allow non-destructive non-
invasive (in the sense that the tissue is already exposed dur-
ing surgery, and it is not compromised by the measurements)
collection of the spectra: in contrast to ex-vivo techniques
like histology or infrared spectroscopy, there is no need to
remove the brain tissue for Raman based diagnosis.

Utzinger and Richards-Kortum [21] discuss fibre optic
probes for biomedical applications, and Santos et al [22]
studied the background signal of commercially available op-
tical fibres. Optical fibres conducting light emit a Raman
spectrum due to their excitation by the conducted light. How-
ever, the silica signals appear only in the fingerprint region
of the Raman spectrum. If the spectral region above 2000 cm-1

Raman shift suffices for the data analysis, unfiltered probes
with combined excitation and detection fibre can be used.
This considerably eases miniaturisation. A proof-of-concept
study distinguished vital GBM from necrosis in the high
wavenumber region of the Raman spectra [13].

2 Hard and Soft Classification

2.1 Hard and Soft Classification for Tumour Grading

Like qualitative analysis, classification addresses alternative
questions. Each sample is assigned to one of a set of pre-
known categories, the classes. The classes are, e. g., presence
or absence of certain analytes, or of a disease. Classification
is a supervised technique: the chemometric models are built
(trained) using spectra together with a reference information
stating to which class each spectrum belongs. Such informa-
tion connecting sample and class is called label or member-
ship. The model can then classify (predict) new samples. So
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far, the class labels must be hard (crisp): each spectrum must
belong exactly and completely to one class.

In tumour grading, several issues are not described ap-
propriately by hard labels:

1. Astrocytomas may de-differentiate, i. e. areas with cells
currently undergoing the progression from one WHO
grade to the next may be encountered.

2. The tumours frequently are spatially heterogeneous: one
tumour can contain cells of varying differentiation. As
astrocytomas grow infiltratively, transition zones of grad-
ually changing amounts of cells result.

3. Like measurements, diagnoses are subject to random and
systematic uncertainty, and histology and/or different meth-
ods’ diagnoses may disagree (see e. g. [23]).

4. Sometimes, like in our study, the diagnosis is given for
parallel cryo-sections while the spectra are taken of moist
bulk tissue. Further uncertainty arises with regard to the
exact location of the different tissues in the bulk sample.

The first of these problems is inherent to tumour grading.
Gene and protein expression of morphologically similar as-
trocytoma tissues can vary depending on the patient’s tu-
mour grade. The biochemical changes during de-differentiation
of astrocytomas are quite continuous [1, 24]. In addition,
any therapy the patient has received previously may induce
selection ( 1

4 of our samples are from recurrent tumours).
Raman spectroscopy probes the biochemical composition,
while the histological grading uses morphology. The bor-
ders due to morphological changes thus may not coincide
with the most prominent changes in the spectra.

Considering the second problem, it may be possible to
arrive at a diagnosis at cell level. However, single cell treat-
ment is not feasible in open surgery. In-vivo tools for intra-
surgical guidance should deliver the spatial resolution re-
quested by the surgeon. This is particularly important for
our application as higher spatial resolution implies dispro-
portionally longer measurement time.

Regarding the (dis)agreement among different histolo-
gists, it should be noted that the agreement in astrocytoma
grading among neuropathologists is much higher than among
surgical pathologists [23]. Wrensch et al [25] reached con-
sensus diagnosis in 886

900 = 98.5 % of the patients. In constrast
to grading a patient’s tumour, our aim is the distinction of
tissues within the tumour. This implies a fundamentally dif-
ferent “detailed” concept of reference diagnosis which is ex-
plained in detail below (section 4.1).

Transferring the neuropathologist’s findings onto the mea-
surement grid can raise substantial difficulties (see the ex-
perimental section).

Samples for which a hard reference label cannot be ob-
tained are frequently excluded from the classification train-
ing data. This is a rather unfortunate decision:

– In biomedical spectroscopy samples are rare, but the qual-
ity of classification models depends crucially on the num-
ber of samples (patients) per variate (data points per spec-
trum) [26–28]. Many spectroscopic studies aiming at med-
ical diagnosis comprise patient numbers 10 to 100 times
below the recommended 5 samples per class and variate
[28–31].
As samples are so scarce, every sample should be used.

– More importantly, spectra of the transition zone are ac-
tually examples of the sought decision border, and are
thus most useful training samples.

– Diagnostic tools are preferentially used for difficult cases.
Borderline cases should therefore be included into the
training (or at least test) data as early as possible.

– Excluding borderline samples from classifier training cre-
ates a serious risk of overestimating the class separabil-
ity. Moreover, this can only be detected by borderline
cases in the test set. Such test data is suitable for training
as well.

Soft classification denotes two different and independent
generalization strategies of traditional, hard classification.
Firstly, one-class classifiers (like soft independent modelling
of class analogies, SIMCA) allow that samples belong to
more than one class each. Secondly, samples may belong
to each class only partially: partial memberships state a de-
gree of belonging, and take values between 0 and 1 (100 %).
Here, we use partial memberships while requiring all mem-
berships to sum to 1. One-class classfication is not meaning-
ful in our application as the classes are mutually exclusive.

Throughout the paper, we refer to samples or spectra be-
longing completely to one class as crisp, and to samples (or
spectra) with partial memberships in more classes as soft.
Likewise, classifiers built using soft (and crisp) samples are
soft classifiers.

Many classifiers produce partial memberships as primary
output. Fewer methods allow partial membership in the ref-
erence labels. This explains why soft labelled data is usually
excluded from training.

Partial class memberships are interpreted in two ways.
Firstly, the sample can be a mixture of the underlying classes,
e. g. cells undergoing de-differentiation or mixtures of dif-
ferent cell types. Thus the qualitative analysis becomes quan-
titative: the analysis of a mixture. Non-chemical disciplines
frequently discuss this in the light of fuzzy set theory (e. g.
remote sensing [32]). Secondly, soft memberships may ex-
press probabilities or degrees of (un)certainty, e. g. uncer-
tainty of histological diagnosis.

From a chemometric point of view, the mixture inter-
pretation leads to calibration techniques such as PLS. In
fact, partial least squares regression with a threshold (PLS-
DA) has been used for hard classification in the context of
biomedical Raman spectroscopy (e. g. [33, 34]). The proba-
bility interpretation calls for regression techniques that model
a probability, e. g. logistic regression.

2.2 Logistic Regression (LR).

Logistic regression linearly models the log odds of class
memberships [26, 35]. Hard LR is a standard method partic-
ularly in the medical and social sciences, and has been ap-
plied for hard vibrational spectroscopic classification with
binary [36], multinomial [37, 38], and hierarchical multi-
class setups [39–42]. To our knowledge, however, the LR’s
capability to handle soft reference labels has not yet been
used for vibrational spectroscopic classification.
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Fig. 1: (a) The logistic function models posterior probabil-
ities. (b) LDA with m = ±0.5 and s = 1 (solid and dotted)
yields the logistic function as posterior probability (dashed),
too.

Link to linear discriminant analysis (LDA) . LDA models
classes as multivariate normal distributions with a common
covariance matrix [10, 26, 35].

Formally, LR and LDA can be shown to be closely linked:
the log odds of the LDA’s posterior probability have the
same form as the LR model. LR, however, does not assume
any particular distribution of the samples. As usual for para-
metric models, LDA is more powerful if its assumptions are
met. But it reacts sensitively to distant samples [26].

LR concentrates on the boundaries between the classes,
while LDA describes the class boundaries towards the out-
side of LD space as well. In other words, the LR in figure 1a
will hardly be influenced by a new sample at x = 5 belong-
ing to the class with positive x as the probability is already
very close to 1. The LDA in figure 1b will change much
more as the new sample is outside the distribution of the
class (black).

Practical considerations. LR classifiers should not be fit-
ted by least squares as the residuals are not normally dis-
tributed [26, 35]. Fitting software for artificial neural net-
works (ANN) conveniently avoids this issue, and can be
used as the LR model is equivalent to an ANN without hid-
den layer using the logistic function as sigmoid. Such LR
models can easily be extended into fully-featured ANN.

2.3 Validation of Soft Classification Models

Validation measures the performance of a chemometric model.
General guidelines can be found elsewhere [27, 43, 44].

For medical diagnostic tests, sensitivity and specificity
are widely used performance measures [45]. The sensitivity
is the number of correctly recognised samples (spectra) of
a class divided by the number of samples truly belonging
to the class. It answers the question how well the class is
recognised. In contrast, specificity asks how well the model
recognises that a sample does not belong to the respective
class. It is calculated as the fraction of samples correctly not
assigned to the class among all samples that truly do not
belong to the class.

These two performance measures can be depicted in the
specificity-sensitivity diagram (e. g. fig. 7), a flipped receiver
operating curve. Sensitivity and specificity are defined solely
for crisp data, i. e. data with crisp reference and crisp pre-
diction. Soft predictions are “hardened” into crisp predic-
tions by threshold values. Varying the threshold trades off
between sensitivity and specificity, yielding a curve in the

specificity-sensitivity diagram that characterises the overall
performance of the models.

The concepts of sensitivity and specificity can be ex-
tended to soft reference data, but this is beyond the scope
of this paper. Instead, we use performance measures appro-
priate for regression models, the mean absolute error MAE
and the root mean squared error RMSE.

MAE j =
1
n

n

∑
i=1
|p̂i, j− pi, j|

RMSE j =

√√√√1
n

g

∑
j=1

(p̂i, j− pi, j)2

with the respective class j, the number of spectra n, the
number of classes g, the reference labels p, and the model’s
predictions p̂. Compared to MAE, RMSE emphasises larger
deviations from the reference, whereas small deviations are
downweighted. The comparison of MAE and RMSE shows
whether the predictions have small deviations for many sam-
ples (low RMSE compared to MAE), or whether fewer spec-
tra are grossly misclassified (high RMSE).

For models that allow soft prediction, MAE and RMSE
are much more sensitive to deviations between the test data’s
label and the prediction than crisp measures like sensitivity
and specificity. Hardending blurs slight deviations, the infor-
mation of the soft prediction is partially lost [46]. Consider
a classifier test where always 60 % posterior probability for
the correct class are predicted. For threshold values between
40 and 60 %, the model reaches 100 % sensitivity and 100 %
specificity, i. e. perfect performance. Nevertheless, the MAE
will not be zero but 40 %. This accounts for thresholds out-
side the range 40 to 60 % which cause misclassification. Pre-
dicting p̂ = 60 % instead of 100 % indicates a substantial
risk that samples exist that are misclassified even though no
such sample was encountered in the test set.

3 Experimental Details

3.1 Samples

The specimen were snap frozen in liquid nitrogen imme-
diately after excision and stored at -80 ◦C until preparation
(approved by the human ethics committee of the Dresden
University of Technology). The data comprises nine control
samples, i. e. samples obtained from patients without any
history of brain tumours. Three of these are among the old-
est samples of the collection and were seven years old at
the time of preparation. All other samples had been stored
for less than two years. We included only cerebral tumour
samples of patients where no oligodendroglial tumour com-
pound was documented.

For reference diagnosis, 7 µm cryo sections were cut,
fixed (50 vol% EtOH, 4 % formalin) and stained with methy-
lene blue. Detailed diagnoses (fig. 2a) were obtained for
each section. The remaining bulk of the specimen was kept
frozen until Raman measurement. It was placed on a CaF2
window with the face adjoining the cryo section (fig. 2b).
The CaF2 serves as lid of a moist chamber that prevents dry-
ing of the sample. With the sample hanging from the CaF2
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(a) Methylene blue stained section
with detailed reference diagnosis

(b) Bulk sample prior to
Raman measurement

(c) False colour map indicating refer-
ence labels for the sample. The area at
the transition between ◦II and III (left) is
labelled 50 % with each grade and thus
appears violet. Each pixel corresponds to
one spectrum.

(d) Moist chamber with
sample. A corner of the
Si piece on the Al foil
serves as stage coordi-
nate origin.

Fig. 2: Sample preparation. Sub-figures (a) to (c) show the
same GBM sample. The heterogeneity is typical for the as-
trocytomas. The CaF2 window has a diameter of 12 mm.

window (fig. 2d) the probe’s focus can be kept constant dur-
ing spectra collection. In addition, sample deformation is
kept minimal which is crucial for transferring the reference
diagnosis onto the spectra. Immersion measurements were
not feasible as particularly GBM samples often were all but
cell suspensions.

3.2 Spectra Acquisition

Raman spectra were acquired with a f/1.8 spectrograph (Kaiser
Optical Systems, Ann Arbor, USA) using a filtered fibre-
optic probe (Raman Probe, working distance 5 mm, NA 0.4,
50 and 100 µm excitation and collection fibres; Inphotonics,
USA). The focus diameter is ca. 60 µm. The excitation laser
(785 nm, multimode; Toptica Photonics Inc., USA) delivers
approximately 70 mW below the CaF2 window. The mea-
surements in this initial study were restricted to 6 h per sam-
ple to prevent degradation. The step size of the measurement
grid was chosen accordingly and varied between 200 and
333 µm. The excitation time of 20 s per spectrum includes
a factor of two for the “Cosmic Ray Filter”. Seven mea-
surements were taken without cosmic ray filter (i. e., 10 s
exposure). The excitation fibre diameter of the probe was
not matched to the laser. A more recently acquired probe
(matched, 100 µm diameter) yields the same signal to noise
ratio already in about 5 s.

For the collection of the Raman spectra, the sample out-
line was recorded with the motorized stage (PRIOR Proscan
II; Prior, USA) under the spectrometer’s microscope (Leica,
Germany). A square grid was set up and the points within
the outline polygon (plus a “safety margin” of 2 or 3 spec-
tra) were calculated. The stage was then moved to position

Table 1: Overview of the data set.

crisp reference crisp + soft reference
class patients spectra patients spectra
Normal 16 7 456 35 15 747

thereof controls 9 4 902 9 4 902
Astrocytoma ◦II 17 4 171 47 19 128
Astrocytoma ◦III+ 27 8 279 53 21 617
total 53 19 906 80 37 015
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Fig. 3: Only 55 % the spectra could be labelled crisply, and
more than a third of the patients do not have any crisp spec-
trum.

the moist chamber under the fibre-optic for the automated
measurement of the defined points. The bottom right cor-
ner of a little Si piece served as a coordinate origin (fig. 2d)
that is easily found manually in the visible microscope im-
age and automatically with a 2d divide and conquer search
using the 520 cm-1 band of the Si corner under the probe.

3.3 Spectra Pre-processing and Data Analysis

3.3.1 Reference labels.

The detailed diagnoses given for the parallel sections (fig. 2a)
were transferred onto the measurement grid (fig. 2c). The
transfer of the diagnosis onto the measurement grid was car-
ried out without any display of the spectra using exclusively
the visible images. Tumour tissue diagnosed as borderline
case (violet area in fig. 2c A ◦II/III) was labelled belonging
half and half to the respective classes (violet = half red, half
blue). The diagnosis “individual tumour cells in normal tis-
sue” and tissue where the histologist was not sure whether it
is tumour were labelled as 5 % tumour and 95 % normal.

Some samples were completely round so that the rota-
tion between measurement grid and diagnosed parallel sec-
tion could not be determined with certainty. Also, deforma-
tion of the sample during thawing sometimes cause the exact
location of the diagnosis on the measured surface to be am-
biguous. Areas affected by such “deformation uncertainty”
were labelled with the fractions of the areas occupied by the
different classes on the reference section.

Tab. 1 and fig. 3 give an overview of the labelled data.

3.3.2 Data analysis.

All further data processing used the statistical environment
R [47], including ggplot2 [48] for graphical display.
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Pre-processing. The raw spectra were imported into the
spectra handling package hyperSpec [49] using R.matlab
[50]. The spectral ranges below 755 cm-1 and between 1850
and 2500 cm-1 were discarded. Co-additions were multiplica-
tively signal corrected (package pls [51]) and averaged. The
spectra were corrected for the camera’s dark current and
intensity calibrated. Baseline correction (755 to 1850 cm-1

quadratic, 2625 – 3100 cm-1 linear; automatically fit) and cut-
ting to 755 – 1800 and 2800 – 3025 cm-1 followed.

The spectrometer measures 2680 data points between
125 and 3556 cm-1 Raman shift with 4 cm-1 resolution and
data point spacing between 0.87 cm-1 and 1.85 cm-1. A smooth-
ing interpolation (spc.loess [49]) created an evenly spaced
Raman shift axis with data points every 5 cm-1. This lowers
the number of variates in order to stabilise the models. In ad-
dition, lower spectral resolution allows wider spectrometer
slit and thus faster measurement in the clinical application.

Too intense spectra, spectra from outside the sample, and
a few spectra that were contaminated due to accidentally
switched on flourescent lamps were removed.

The spectra were normalised on the mean intensity be-
tween 2900 and 3025 cm-1 to approximately correct overall
intensity changes that are not due to the spectral properties
of the measured tissue (e. g. slightly changing focus). All
spectra have good signal to noise ratio, well defined base-
line, and also a similar shape in this spectral region: the
mean signal to noise ratio is 29, whereas between 755 and
1800 cm-1 the average is 6 only. In addition, the spectral re-
gion below 1800 cm-1 contains residual baseline (most ob-
vious below 900 cm-1 and above 1720 cm-1) which would
largely affect the normalization. The ratio of the area under
the spectrum between this spectral region and the region in
between (900 – 1720 cm-1) ranges from 5 to 90 %. Normal-
ization cancels the information of one variate. Consequently,
the last data point of each spectrum was excluded.

Finally, we centred the data by subtracting the average
spectrum of normal grey matter as a well defined reference
that is independent of the fractions of the different tissues in
the data set. Fig. 4 shows the pre-processed spectra before
centring. The spectral signature of proteins is largely can-
celled by subtraction of the average grey matter spectrum
(after normalization): the amide I and phenylalanin bands
at 1660 and 1005 cm-1 are clearly visible before centring
(fig. 4), but can hardly be identified afterwards (fig. S.3)
though the high grade tumour spectra show a residual fea-
ture at 1005 cm-1. Thus, the normalization seems to normal-
ize roughly to the protein content.

The models presented here summarize the spectra by
linear combinations. Such models can implicitly do certain
baseline corrections and normalization. E. g., a coefficient
pattern of− 1

2 I1+I2− 1
2 I3 probes a signal at I2 corrected by a

linear baseline through I1 and I3. Predictive quality depends
less on the preprocessing than the spectroscopic interpre-
tation of descriptive models. Yet they will profit of external
spectroscopic knowledge that enters the data via preprocess-
ing. All preprocessing was decided exclusively using spec-
troscopic knowledge, and no data-driven preprocessing was
performed. Classifier optimization relies on model compar-
ison – which is difficult for predictive classifiers [52]. So-
lutions are not yet known for “hierarchical” data structures

800 1000 1200 1400 1600 1800 2900

N
A

°I
I

A
°I

II+

∆ν~ cm−1

I
a.

u.

Fig. 4: Weighted median, 16th, and 84th percentile spectra.
Thick line: the mean grey tissue spectrum used for centring.

like the present containing multiple patients and large and
varying numbers of spectra per patient.

Classification models. The samples are distinguished into
normal brain tissues (white or grey matter, and leptomeninges;
class “N”), A ◦II (low-grade morphology; class “A ◦II”), and
high grade astrocytomas (A ◦III, GBM, and necroses; class
“A ◦III+”). A small amount (0.5 %) of gliotic tissue is com-
prised in class N. While gliosis is not strictly normal, we
retain the name for convenience. The classes reproduce the
surgically relevant groups of tissue, and may be thought of
as “must be preserved”, “remove if possible”, and “must be
removed”. These classes are heterogeneous in terms of tis-
sues, and also in terms of the corresponding spectra. Nor-
mal white and grey matter have very different spectra (see
e. g. [14, 53]), as particularly the different lipid contents and
compositions change the Raman spectra. Also for A ◦III+
tissues differences have been described (e. g. [12, 13]).

In order to determine the proper class set up, two ef-
fects need to be traded off. On the one hand, heterogeneous
classes are often difficult to distinguish as the within-class-
variation is high: there should not be too few classes. Other-
wise, the model will misclassify certain groups of samples.
On the other hand, more classes also come with a penalty.
Additional classes multiply the degrees of freedom of the
model, requiring also a multiple of training samples in order
to keep the models stable. A model with too many classes
spends information on determining surgically irrelevant class
boundaries. This causes a loss in classification performance
also on the relevant class boundaries.

As our data set consists of about an order of magnitude
less patients than recommended, the main concern is sta-
bility. Heterogeneous classes do not imply problems in the
classification. The classification methods used in this pa-
per first (linearly) project the spectra into a classifier space
where the classes are as separate (and also as homogeneous)
as possible. As long as the classes can be projected into a
good ratio of between-class-variance : within-class-variance,
LDA will work nicely. LR requires only clear linear class
boundaries and is less concerned about the homogeneity within
the classes.

Four different models were built:

LR-soft: LR using all spectra, with crisp and soft reference
LR-crisp: LR using spectra with hard labels only
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Table 2: Difference between diagnosis of a patient’s tumour and detailed histological diagnosis. The patient’s tumour grade
according to the usual diagnostic procedure (rows) compared to the tissue dominating our reference section (columns).
Morphologically varying differentiation within astrocytoma tissues is described in analogy to the grading of the WHO (see
text).

Diagnosis for Main tissue morphology of the section (≥ 50 % of section’s area)
Patient Normal not sure∗ Border† ◦II ◦II-III ◦III ◦III-IV ◦IV Necrosis total
Control (normal) 9 9
Astro. ◦II 3 1 1 2 7
Astro. ◦III 2 2 3 4 4 5 20
Glioblastoma 4 3 9 5 4 12 6 6 8 60‡

total 18 6 13 11 8 17 6 6 8 96
∗ neuropathologist was not sure whether the tissue contains tumour cells † tumor cells infiltrate normal tissue ‡ 3 samples too heterogeneous:

no dominating tissue

LDA: LDA using the same spectra as LR-crisp
LR-highwn: LR using all spectra, but only ∆ν̃ ≥ 2800 cm-1

As a well established technique, LDA serves as a stan-
dard. Together with LR-crisp and LR-soft, the difference be-
tween LDA and LR on the same samples can be separated
from the influence of the borderline samples with soft labels
on the (LR) models. LR-highwn models test whether unfil-
tered probes are a promising direction for Raman guidance
in astrocytoma surgery.

10 000 spectra were randomly drawn with replacement
from all training patients (see set-up of the cross validation
below). To obtain a more balanced training set, the probabil-
ity to select A ◦II or N spectra was increased as follows. The
odds of crisp spectra were 1.5 for class N, 3 for class A ◦II,
and 1 for A ◦III+. The odds for soft labelled samples were
the weighted average of these values. The resulting training
sets consist of ca. 33 % N, 37 % A ◦II, and 30 % A ◦III+ (un-
weighted: 35, 24, and 41 %). LR-soft and LR-highwn mod-
els used exactly the same training spectra, and so did the
LDA and LR-crisp models (where the training spectra were
drawn of the crisp spectra of the same training patients).

LR and LDA models were calculated using the R pack-
ages nnet [35] and MASS [35], respectively.

Validation. A 125× iterated 8-fold cross validation scheme
was used, randomly splitting patient-wise to ensure statisti-
cal independence.

Iterations of the cross validation scheme reduce the ran-
dom uncertainty on the performance measures. Moreover,
they allow to measure model stability (with respect to chang-
ing training sets). Stability was calculated as the standard
deviation of the predictions for each spectrum across the it-
erations.

Sensitivity and specificity computations used ROCR [54].

4 Results and Discussion

4.1 Reference Diagnosis

Gliomas are very polymorphous tumours, and thus the sam-
ples are heterogeneous: even GBM frequently have regions
that are morphologically similar to low grade astrocytomas.
We refer to this grading of morphological similarity as “de-
tailed diagnosis”.

Table 2 shows the main tissue found in the reference sec-
tions compared to the tumour grade reported for the patient.
The patient’s tumour grade was determined indepently from
our samples using using samples taken explicitly for his-
tologic diagnosis and grading of the patient’s tumour (yet
during the same surgery). This process includes a histologi-
cal review of ambiguous cases (either due to uncertainty of
the neuropathologist or due to differences between histol-
ogy and clinical and radiology findings) by the brain tumour
reference centre in Bonn/Germany.

About 10 % of the tumour samples were actually domi-
nated by normal tissue. For another 5 % of the tumour sam-
ples pathologist was not certain whether the predominant tis-
sue contained tumour cells at all. Only 1

4 of the sections con-
sisted mainly of a tissue that would define the patient’s diag-
nosis, i. e., tissue of a grade that would establish the overall
diagnosis for this patient. None of the 96 sections gave ev-
idence of a possibly higher tumour grade than documented
for the patient.

Grading a patient’s tumour versus grading a tissue for sur-
gical guidance. It is important to realise how much the con-
cept of grading in these detailed diagnoses differs from the
usual process of grading a patient’s tumour. The diagnosis
for the patient is given by the most de-differentiated (high-
est grade) tissue in the tumour – however small this region
may be. In contrast, an intra-operative tool must distinguish
different tissues within one tumour. The detailed diagnoses
discussed here refer to this second grading concept. The het-
erogeneity of the samples enlarges the differences of the re-
sults of the two diagnostic concepts, resulting in the triangu-
lar shape of table 2.

Chemometric implications. From a chemometric point of
view, diagnosing the patient’s tumour is a rather problem-
atic (ill-posed) procedure. Firstly, the heterogeneity of the
tumour tissue leads to a high sampling uncertainty, the more
as tumour tissue is usually sampled at the tumour border
rather than at the core. Secondly, finding the (possibly tiny
region with the) highest grade tissue is an awkward oper-
ation, as the maximum-operator captures large amounts of
uncertainty. The detailed diagnosis does not share these two
problems, as it does not extrapolate a statement for the whole
tumour but aims solely at the present tissue.

A third step that introduces additional uncertainty is en-
forcing a crisp diagnosis. Mathematically, dichotomization
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corresponds to an information loss [46]. Thus, hardening
e. g. ambiguous diagnoses arising from continuous dedif-
ferentiation into a few available groups (e. g. WHO grades)
causes an information loss, i. e. increased variance. E. g. Kendall
et al [55] find highest disagreement for intermediate grades:
the fraction of diagnoses where all pathologists agreed with
respect to the number of cases where at least 2 of the 3
pathologists agreed was 91 – 55 – 0 – 51 – 84 % of the
spectra for normal tissue – intestinal metaplasia – low grade
dysplasia – high grade dysplasia, and adenocarcinoma. Par-
tial memberships avoid the additional variance caused by
the hardening as well as information loss due to exclusion
of samples.

Astrocytomas are well known to grow infiltratively and
de-differentiate, leading to heterogeneous samples. Finding
lower grade tissue than the patient’s diagnosis states was
therefore expected. The extent, however, is consistently over
all (patient’s) tumour grades much larger than anticipated.

Classification models can be successfully trained even if
a certain amount of the training data is mislabelled. How-
ever, the fraction of mislabelled data must not be too high,
and usually more samples are required to outweigh those
“bad” examples. However, even if the high grade astrocy-
tomas are not further distinguished into A ◦III and GBM,
less than half of the high grade tumour samples consist mainly
of high grade tissue. And less than a third of the A ◦II sam-
ples is dominated by low grade tumour tissue. In this situ-
ation, successful classifier training is impossible. Building
a classification model for intra-operative grading of tumour
tissue thus needs detailed reference diagnoses across the ac-
tually measured tissue.

4.2 Spectroscopic Classification of the Astrocytoma

4.2.1 Descriptive LDA and Spectroscopic Interpretation

This study focuses towards a time critical predictive applica-
tion. In order to give a proof of concept for feasible measure-
ment times, and to gain on overview of the predictive perfor-
mance for noisy spectra, signal-to-noise ratio and spectral
resolution were chosen lower than appropriate for decrip-
tive models aimed at spectral interpretation and discovery
of new biochemical features in the samples. Yet the spectro-
scopic meaning of the models can of course be studied.

LDA models derive the final class membership values
(i. e. posterior probabilities) from the Euclidean distance be-
tween spectrum and class means in LD space [10, 56]. Fig-
ure 5 shows a 2d histogram [57] of all crisp spectra in LD
space. LD 1 coincides with the direction of increasing ma-
lignancy. This has been observed with a four-class model
based on infrared data as well [58].

For the interpretation of the probed biochemical prop-
erties a rotated version of the LD model is more suitable:
the three classes form an approximately orthogonal triangle
(this is true for all 8× 125 models). Rotating the projec-
tion (i. e. fig. 5) about 48 °counterclockwise results in a LD
space where the two directions distinguish normal from tu-
mour tissues and (normal and) low grade tissues from high
grade tissue (directions inset in fig. 5). LDA is invariant to
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Fig. 5: 2d histogram of the crisp data in LD space. The el-
lipses mark the area that contains 50 % of the samples of
a bi-variate normal distribution with mean and covariance
matrix as observed for each class. After rotating the original
LD space 48 °counterclockwise (small arrow), the rotated
LDs (inset directions) are the horizontal and vertical axes.
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Fig. 6: Coefficient spectra of the rotated LDA (lower two
rows, median and quartiles) and median contribution of the
spectral regions to the LD score (upper two rows, N: green,
A ◦II: blue, A ◦III+: red). The quartiles of the contributions
are available as fig. S.3. The 1st rotLD has positive scores
for tumour tissue and the 2nd positive scores for high grade
tumours.

rotation, mirroring, and translation of the LD space, but not
to scaling. All models were rotated so that the mean of the
A ◦II class lies exactly right of the mean of class N in the
new rotLD space. Mirroring was not needed, neither were
the models shifted. We obtained a set of rotated LDA models
that are as similar as possible to each other while retaining
prediction and coordinate origin.

These rotated models are now open to spectroscopic in-
terpretation in two ways. On the one hand, the coefficients
(lower part of fig. 6) probe the corresponding wavenumbers
of the spectra. In order to judge the influence of such a co-
efficient on the prediction, not only magnitude and sign of
the coefficient but also the magnitudes and signs of the spec-
tra must be taken into account. Element-wise multiplication
of spectra and coefficients yields “contribution spectra” that
give direction and magnitude of the contribution of the re-
spective wavenumber to the rotLD scores. 7.5 ·105 contribu-
tion spectra were calculated for each class and direction by
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randomly picking a spectrum according to its membership
to the class and one of the models. The upper part of fig. 6
shows the median contribution for both rotLD directions and
all three classes, fig. S.3 also gives the observed quartiles.

For spectroscopic interpretation, one further issue arises:
the intensities are not pure (difference) Raman spectra. The
raw spectra showed a high and wavenumber dependent back-
ground, particularly in the low wavenumber region below
∆ν̃ = 1800 cm-1. Baseline correction was applied to correct
for most of its influence, but the corrected spectra clearly
comprise residual background (figs. 4 and S.3). For the spec-
troscopic interpretation of the models it must be kept in mind
that coefficients may “deliberately” probe the background
for two opposite reasons. Firstly, the projection can include a
background correction. Secondly, the background of the raw
spectra increases with malignancy, and the residual back-
ground correlates in shape and magnitude with malignancy,
too. Such a background signal may be used for classifica-
tion. Several physical and chemical effects may contribute
to the background, e. g. fluorescence emission of the sam-
ple. In fact, autofluorescence at lower wavelengths has been
studied in terms of its brain tumour diagnostic potential [40].

In the spectral region below ∆ν̃ = 900 cm-1, the residual
background signal overwhelms any possible Raman contri-
bution. As the coefficients (fig. 6, lower part) are rather large
(but changing sign), the models do actually use the resid-
ual background. On the other hand, some coefficients in this
region correspond to bands of substances that are known
to change in the direction probed by the models, e. g. the
DNA band at 785 cm-1 and the glycogen signal at 850 cm-1

are both expected to be more intense in the tumours (in our
models these wavenumbers indicate high grade tissues). In
contrast, the signal at 865 cm-1 is probed for a decrease in
tumour tissues. This Raman shift is considered typical for
phosphatidylethanolamine [59], for which a decrease in ma-
lignant astrocytomas was spectroscopically found by Bel-
jebbar et al [60]. Also the series of alternating coefficients
between 1100 and 1200 cm-1 seems to probe the background
of the signal in addition to probing specific bands.

In the high wavenumber region between 2800 and 3025 cm-1,
a decrease in the νCH stretching bands with increasing ma-
lignancy is obvious from the spectra. The bands at 2850
(νsCH2) and 2885 cm-1 (νsCH3, νCH2 in Fermi resonance)
are typical for many brain related lipids [53, 59, 61], while
the ν= CH band at 3010 – 3015 cm-1 indicates unsaturated
compounds. The respective antisymmetric bands overlap with
the CH stretchings of other compounds such as proteins,
DNA, RNA, and glycogen (see e. g. [13, 62]) and cannot
easily be separatedq. Interestingly, the first rotLD (normal
vs. tumour) does hardly use this spectral region. Instead,
the 2nd rotLD, i. e. the recognition of high grade tissues,
on median collects about half of the total score by detect-
ing the lack of the νsCH2 and νsCH3 bands. This corre-
sponds to the observation that many low grade tumour spec-
tra show higher intensities here than the gray tissue, while
lower quartile of the observed intensities (lower trace of the
A ◦II spectra in fig. S.3) is more similar to the distribution
of the high grade tissue spectra. The same holds for νC−C
at 1065 cm-1, which is also used by the 2nd rotLD. Biochem-
ically, this translates to the well known general decrease in

lipids for the malignant astrocytomas. These contributions
are counteracted by the contribution at 1440 cm-1 (CH2 de-
formation). This band does not show a consistent intensity
for the high grade tumours in the centered spectra. Another
interesting property of the models is that they do not use the
CH2 twisting band at 1295 cm-1 though the band is present
in the centered spectra.

The most prominent contribution to the distinction be-
tween normal and tumour tissues is at 1270 cm-1 (δ=CH of
unsaturated fatty acids), where the high grade tumours gain
about 3

4 of their final score, and the low grade tumours about
half. In addition, both rotLDs use the band at 1665 cm-1.
The νC−−C of unsaturated fatty acids (1660 cm-1), however,
hardly contributes to the recognition of tumours, but it serves
for the detection of high grade tissues. Colesterol esters give
a signal here (1670 cm-1), too. The band position for choles-
terol itself is at 1675 cm-1 [59], where the coefficients of
both rotLDs are essentially zero. The centered spectra sug-
gest a lower content of unsaturated lipids (and cholesterol
esters) with increasing malignancy, and in white matter. This
is in agreement with the results presented by Köhler et al
[53] and Beljebbar et al [60]. The second paper [60] reports
higher contents of oleic acid in an animal model of GBM
than in the surrounding normal grey tissue while cholesteryl
oleate decreased, the sum of both being lower in the tumour
than in the grey tissue. Our models probe this sum rather
than the individual contributions, as they do not try to distin-
guish between unsaturated fatty acids and their cholesterol
esters (which would be indicated by a change in the sign of
the coefficients at 1665 cm-1).

As both the δ=CH and the νC−−C bands lie in the region
of the amide III and amide I bands of proteins (at 1225 –
1300, and 1645 – 1675 cm-1, respectively), the interpretation
as lower amounts of unsaturated lipids must be judged against
changes in the protein content. The interpretation in favour
of the lipids is strengthened by two arguments. Firstly, the
centered spectra clearly show that the probed bands are nar-
row. Secondly, we observed that the normalization and cen-
tering effectively deletes the spectral signature of the pro-
teins. Moreover, the tumours have lower lipid : protein ratios
than the normal grey tissue [16, 53, 60]. The normalization
may be influenced by the lipid content of the tissue as the
νasCH2 and νasCH3 stretching vibrations lie in the spectral
range considered for normalization. Thus, the calculated in-
tensity may be higher than it should be for normalizing on
the protein content. In this case, the remaining spectral sig-
nature of proteins in the centered spectra should be positive.
Yet the observed differences at 1270 and 1665 cm-1 are neg-
ative.

On the other hand, a close inspection of the phenylala-
nine band at 1005 cm-1 does shows a weak positive residual
signal for the A ◦III+ tumours which gives an important con-
tribution to the distinction between normal and tumour tis-
sue. We attribute the unusual width to the downsampling of
the spectral resolution affecting this sharp and intense band
rather heavily (the smoothing interpolation preserves signal
area rather than height).

Koljenović et al [12] reported high glycogen contents
of (vital) GBM tissue. Our 2thnd rotLD takes bands at 850,
1090, and 1340 cm-1 (for a reference spectrum see e. g. [62])



10

Specificity

S
en

si
tiv

ity

0.0

0.2

0.4

0.6

0.8

1.0
N

LR−soft

LDA

0.0 0.2 0.4 0.6 0.8 1.0

A°II

LR−soft

LDA

0.0 0.2 0.4 0.6 0.8 1.0

A°III+

LR−soft

LDA

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7: Performance of the LDA (orange, continuous) and LR-soft (violet, dashed) models: median and quartiles observed
over the 125 iterations of the cross validation, hardening thresholds 0.01 – 0.99. The LR-soft models recognize normal tissue
more sensitively, and also perform better for the low grade tumours. The performance for the high grade tumours is virtually
the same.

as evidence for high grade tumours. However, due to the
negative residual baseline of the high grade tissues in these
regions the median of the final contribution is negative (to-
wards low grade or normal tissue).

A rather weak but broad contribution to the distinction of
normal vs. tumour tissues is at 1635 cm-1, corresponding to
the center of the water deformation band. Gliomas have been
reported to contain more water than grey and white matter
[53]. The water content of tissues is defined, and changes
do have diagnostic importance. For intra-operative use two
points should be kept in mind, though. Firstly, the normal
tissue close to the tumour is often edematous, and additional
swelling of the tissue may be caused by the operation. Future
models that should use changes in the water content must
be trained with samples of swollen normal tissue. Secondly,
while tissues have a defined water content, during surgery
physiological solution is used to flush and moisten the ex-
posed tissues, and superficial water may show up in the Ra-
man spectra.

The upper quartiles of the Raman spectra (particularly
of the high grade tumours, see also fig. S.3) clearly show the
typical pattern of hemoglobin which is resonance enhanced
with the 785 nm excitation. In general, malignant samples
were more bloody but one of the control samples also con-
tains large amounts of blood. In spite of the strong charac-
teristic spectrum and the correlation with the malignancy,
hemoglobin hardly contributes to the classification. Again,
while growth of new blood vessels indicates malignant tu-
mours, the occurence of blood is not of much diagnostic
value during surgery. Diagnostic models must not be con-
fused by the presence of blood (nor by hemoglobin oxida-
tion state, see e. g. [62]).

4.2.2 General predictive performance of the models

The overall performance for the crisp spectra is rather sim-
ilar for the LR-soft and LDA models, with good recogni-
tion of normal tissues and almost as good recognition of the
high grade morphologies (fig. 7). Normal tissue is recog-
nised slightly more sensitive than specific, while the recog-
nition of high grade tissues is more specific than sensitive.
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Fig. 8: Model stability: the standard deviation of the pre-
dictions observed over the iterations of the cross validation
(details see text). A version detailing also the classes in the
prediction is available as fig. S.1. The boxes mark median
and quartiles, the whiskers extend to the last value inside
1 1

2× the inter quartile range (IQR) from the box, all further
values are marked by points [47].

The decriptive analysis, particularly fig. 5, showed the low
grade tissues rather encompassed between the normal and
high grade tumour tissue, while normal and high grade tis-
sues are substantially better separated. Consequently, the low
grade morphologies are most difficult to recognize. Both
boundaries, against the normal as well as against the high
grade tissues, contribute about the same amount to the total
misclassifications. This is revealed also by inspection of the
MAE and RMSE (fig. S.2).

Model stability. Models built with large numbers of pa-
rameters but comparably few training samples may suffer
from instability. For crisp samples, unstable predictions im-
ply systematically bad performance. Therefore, the predic-
tion stability is checked by calculating the standard devia-
tion (sd) over all iterations of the cross validation for each
spectrum. Fig. 8 summarizes the results for the different
reference groups, while fig. S.1 details also the differences
between the predicted memberships. Many predictions of
models trained on crisp samples only (LDA and LR-crisp)
are much less stable than the models trained on the soft
spectra as well (LR-soft and LR-highwn): the upper quar-
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tile are 0.15 and 0.18 vs. 0.10 and 0.05, respectively. On the
other hand, the median stability of LDA and LR-soft is prac-
tically the same (0.75 vs. 0.75). The LR-highwn estimate
much fewer parameters (2× (46+ 1) = 94; vs. > 500 for
the other models). Accordingly, their predictions are much
more stable. In general, the predictions are more stable for
the two “easy” groups of spectra, normal and high grade tis-
sues, than for low grade tissue and soft samples.

4.2.3 Comparison of LDA and LR: models using crisp
training samples only.

The LDA and LR-crisp models perform equally for the low
grade tumours (fig. S.4), though the LDA recognizes nor-
mal and high grade tumour tissues slightly more sensitively.
MAE (fig. S.2) is 1.5 % elevated (between 1 % lower for nor-
mal and low grade tissues and 3 % higher for high grade
tumour tissues), the RMSE 3 % (1 –4.5 %). The higher in-
crease in the RMSE indicates large deviations in few cases,
i. e. LR-crisp predicts a few more samples grossly wrong.

In conclusion, the unequal covariance structure between
the classes (fig. 5) does not disturb the LDA. The gain in
power due to the LDA’s parametric model outweighs the
LR’s advantage with heterogeneous classes. Also, the pre-
dictions of the LR-crisp models are less stable than the LDA’s
predictions (median stability 0.09 vs. 0.075, see figs. 8 and
S.1). We may safely conclude that a major part of the overall
misclassifications is correlated to the models’ instability.

4.2.4 Do soft labelled spectra improve the models?

However, the LR models improve when the soft labelled
spectra are included into the model training (fig. 7). De-
tailed specificity-sensitivity-diagrams comparing LDA vs.
LR-crisp, and LR-crisp vs. LR-soft are in fig. S.4 in the sup-
plementary material. For the remaining discussion here, we
compare the LR-soft to the LDA models as the LDA is su-
perior to LR-crisp (see above).

The most important improvement over the LDA is in the
recognition of A ◦II and the borderline cases (soft spectra),
while the recognition of normal tissue shows only a minute
increase in sensitivity. The LR-soft models have an slightly
increased overall MAE (+1.4%), while the RMSE improves
strongly (−9 1

2 %), see fig. S.2 for details. More precisely,
the MAE is highly increased for the crisp high grade tu-
mour tissues (+25%). Also the crisply labelled low grade
tissue have an elevated MAE (+5 1

2 %), whereas the normal
tissues (i. e. group of samples as opposed to class member-
ship) are hardly affected (+1%). This increase for crisply
labelled samples is counterweighted by a marked decrease
in the MAE for soft labelled samples (−8%). The RMSE of
the crisp A ◦III+ samples is not affected (−1 1

2 ‰), while the
crisp low grade tissues are recognized much better (−7%),
and the RMSE for normal tissues and soft samples drop
strongly about 1

7 (−14%) and 1
8 (−13%), respectively.

The corresponding changes in the predicted member-
ships of the three classes in the MAE are +3% (N),−2 ‰(A ◦II),
and +10% (A ◦III+). The RMSEs improve by−8%,−13 1

2 %,
and −6%, respectively.

The much improved RMSEs in contrast to the slightly
worse MAEs mean that the predictions of the LR-soft mod-
els deviate slightly from the reference for many samples,
whereas the LDA models have larger deviations in fewer
cases (fig. S.2).

The stability of predictions (figs. 8 and S.1) for the low
grade tumours and the soft samples improves perceivably.
The distribution is is much narrower for the LR-soft: the
inter quartile range (IQR) of the LR-soft’s stability is only
half compared to the LDA’s, i. e. 0.06 instead of 0.13. Com-
pared to the LDA, the upper quartile is lower (0.10 vs. 0.15),
but the median is basically unaffected (LR-soft:0.70, LDA:
0.75). Thus, some samples are predicted considerably less
stable by LDA and LR-crisp.

This as well as the behaviour of MAE and RMSE are in
accordance with the LR-soft models having smoother transi-
tions between the classes than both LDA and LR-crisp mod-
els: i. e. the posterior probability function (compare fig 1) is
steeper for the models built without borderline cases.

An additional benefit for the LR-soft is the 50 % increase
in patient numbers. The increased sample base is extremely
important for the modeling of the A ◦II class: LR-soft uses
four times as many patients to model the low grade tissue
and 4 1

2× the number of spectra (tab. 1). The low grade tu-
mour spectra are encompassed between the two other classes,
and crisp training samples are rare (tab. 2). Such classes
are apt to being ignored between the encompassing classes.
While we counteract this risk by drawing more A ◦II spectra
for training, additional patients help much more effectively.

Whether and to what extent soft labelled samples actu-
ally help in model training depends also on the uncertainty
in the reference labels. If the soft labelled spectra include a
disproportionally large amount of wrong labels, the model’s
performance may even deteriorate. Particularly, inaccurately
labelled samples close to the class boundaries are critical.
For our data, however, this is outweighted by the advantages:
the predictive performance increased.

For our application, the improvement in predicting the
borderline cases is the most important advance as this group
of samples is the target of the technique. In conclusion, LR
successfully uses the additional information supplied by the
soft labelled spectra of borderline cases.

4.2.5 Models using the C-H stretching region only.

A diagnostic model using the high wavenumber region above
e. g. 2600 cm-1 Raman shift would allow to use cheaper and
smaller unfiltered probes. Unfortunately, the models trained
exclusively on the C-H stretching region perform much worse
than all other models (fig. 9). Already the low sensitivity for
normal tissue immediately disqualifies the model. In fact,
the models predict intermediate memberships for nearly all
spectra (not shown).

This lack in performance insofar astonishing, as the high
wavenumber region not only offers the best signal to noise
ratio but has distinct differences between the classes (fig. 4).
However, while the class median spectra are different, the
distributions of the spectra of the different classes overlap
heavily. Different normalisation may help, but the choice is
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Fig. 9: Performance of the LR using the high wavenumber region only (LR-highwn; green) and LR-soft (using also the
spectral range 755 – 1800 cm-1; violet, dashed) models: median and quartiles of the 125 iterations of the cross validation,
thresholds 0.01 – 0.99. The fingerprint region below 1800 cm-1 is needed for sucessful astrocytoma grading.

restricted (normalising from 2800 to 3025 cm-1 did not vis-
ibly improve the situation). Note that the restiction of the
spectral range obviously includes the preprocessing.

The descriptive interpretation of the LDA models re-
vealed that particularly the distinction between normal and
tumour tissues accumulates differences spread out over the
fingerprint region below 1800 cm-1, whereas the νC−H bands
mainly separated the high grade tumour tissues. Visual ex-
amination of the spectra in fig. 4 and spectroscopic knowl-
edge suggest the ν−−CH signal at 3010 cm-1 as substitute for
the rotLDA’s δ−−CH band at 1270 cm-1. Yet the models are
not able to use it efficiently. Also, the relatively few bands
in the high wavenumber region seem to limit the LR-highwn
models.

The shortcomings of the LR-highwn models cannot be
due to instability which limits the hope for improvement
with additional patients.

5 Conclusions

We presented predictive Raman spectroscopic grading of as-
trocytomas using fibre-optic probes and moist bulk samples
in an experimental setup that is oriented towards the needs of
surgeons for prospective intra-operative in-vivo diagnostics.

The detailed histological assessment of the samples re-
vealed that only 1

4 of the reference sections were dominated
by tissues defining the patient’s tumour grade. Therefore,
detailed reference diagnosis is crucial for the classifier train-
ing. The large amount of normal tissue observed in the tu-
mour samples emphasises the need for better and non-invasive
intra-operative diagnosis.

Including borderline cases into the LR training (soft mod-
els) increased sensitivities and specificities to 85 %, 67 %,
and 84 % for normal tissue, low grade and high grade tu-
mour tissues, respectively (median over all iterations, sensi-
tivity equal to specificity). Both fingerprint region and C-H-
stretching bands of the Raman spectrum are used.

Soft classification offers several advantages over tradi-
tional hard classification. Partial memberships model the spa-
tial transitions (infiltration) and de-differentiation of mor-
phologically different tissues. Thus, borderline cases are used
as examples of the sought decision border. This is particu-

larly important as our task is delineating borders rather than
recognition of typical examples.

Borderline cases describe class overlap, and are needed
to realistically estimate class separation. Excluding border-
line cases implies a risk of overestimating the class separa-
tion. On the other hand, high amounts of mislabelled (crisp
or soft) samples cause overestimation of the class overlap.

Allowing soft training samples also increases the avail-
able number of training samples. In small sample size situ-
ations every sample is needed. Yet, borderline samples will
always enlarge the available sample base.

Partial membership in reference data avoids the informa-
tion loss associated with forcing the histologist to decide for
one of the hard classes for the borderline cases .

LR training including the borderline cases increased the
predictive performance: the advantages of having more sam-
ples and particularly samples of borderline cases prevail for
the astrocytoma grading. Including difficult (borderline) cases
into the data analysis model is an important step towards
real-word application. Difficult cases not only cannot be avoided
in this application, they are the actual target.
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Supplementary Figure S.1: More detailed version of the diagram in fig. 8: the stability of the predictions of the different models
(columns) for each predicted class separately (rows). The boxes mark median and quartiles, the whiskers extend to the last value
inside 1 1

2 IQR from the box, all further values are marked by points [47].
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S.2 MAE and RMSE
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Supplementary Figure S.2: Both MAE and RMSE have the same pattern across the models, and are very similar for all but the
LR-highwn models. Low grade tissues are the most difficult class as they lie in between the normal and high grade tumour tissue:
normal tissue is is confused with low grade tumours,but not with high grade tissue, and vice versa. The soft LR models have slightly
increased MAE for the predicted memberships of crisply labelled spectra, which is counterweighted by a decreased MAE of the
soft spectra. Their RMSE does not show this increase in these cases, but rather an improvement. Also the improvement for soft
samples is more pronounced. Together, these findings allow the conclusion that the LR-soft models have more small deviations
from the reference, while the LR-crisp and LDA models have larger deviations for fewer spectra. This is in accordance with the the
LR-soft modeling smoother class transitions.
The boxes mark median and quartiles, the whiskers extend to the last value inside 1 1

2 IQR from the box, all further values are
marked by points [47].
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S.3 Spectra and rotated LDA Contributions in Detail
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Supplementary Figure S.3: Upper part: detailed Versions of the contributions to the rotated LDA model: median and quartiles,
lower part: spectra before (bottom; black: mean normal grey matter spectrum subtracted for “centering”) and after “centering” (2nd

lowest row).
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S.4 Specificity-Sensitivity Diagrams LDA, crisp, and soft LR
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Supplementary Figure S.4: Performance of the LDA (continuous) and crisp LR (dashed) models (top row), and crisp and soft LR
(lower row), respectively : median, 5th and 95th percentiles observed over the 125 iterations of the cross validation, thresholds 0.01
– 0.99. Both LDA and crisp LR models have virtually the same performance for the low grade tumours, and LDA reaches slightly
higher sensitivities for normal tissue. The advantage of the LDA models is most pronounced for the high grade tumours. Soft LR
outperforms crisp LR for all classes, the improvement is most pronounced for normal tissue, but most important for A ◦II.


	Introduction
	Hard and Soft Classification
	Experimental Details
	Results and Discussion
	Conclusions
	Acknowledgements
	Supplementary Material

